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LATERAT. AND DIRECTIONAL DYNAMIC-RESPONSE CHARACTERISTICS - —
OF A 35° SWEPT-WING ATRPLANE AS DETERMINED
FROM FLIGHT MEASUREMENTS

"By William C. Triplett asnd Stuart C. Brown
SUMMARY

Lateral and directional dynsmic-response characteristice of & 35°
swept-wing fighter-type ailrplane determined fram flight measurements are .
presented and compared with predictions based on thearetical studies snd =
wind-tunnel data. Flights were made at altitudes of 10,000 and 35,000
feet covering the Mach mumber ranges of 0.50 to 0.81 and 0.50 to 1.0k,
respectively. Recorded datas consisted of transient respomses in yawing
velocity, rolling velocity, and sideslip angle to pulse-type motions of .
the rudder and of the gilerons. These transient dsta were converted
into frequency-response form by means of the Fourier trpmsformation and
compared with predicted responses calculated from the basic equations of
motion. The eguatlons, or transfer functions, that best describe the '
various messured responses were evaluated by a curve-fitting process
involving the use of templates and an analogue camputer. By this method
it was generally possible to find eguations, of simple form, that closely
mgbtched the experimental frequency responses between 1 and 10 radians -
Per second and at the same time adequately described the recorded time
histories.
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Experimentally determined transfer functions were used for the
evalugtion of the stebllity derivatives that have the greatest effect
on the dynamic response of the airplane. The values of these derivatives,
in general, agreed favorsbly with predictions over the Mach number range
of the test. There were notable exceptions, however, in some cases at
the flight sltitude of 10,000 feet. These discrepsncies are attributed
to aeroelastic deformations of the wing snd tail. )

Another departure from theory was dlsclosed by evalustions of the :
spirel root which was meny times larger than expected. T :
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INTRODUCTION

This report describes the second phase of a flight-test program
being conducted by the NACA for the purpose of determining the dynamic-
response characteristics of a 35° swept-wing fighter-type airplane. The
first phase of this program, which considered only the longitudinal case,
was reported in reference 1. The present report applies the methods of
reference 1 to the lateral- and directional-response characteristics of
the test airplane. Frequency responses and the assoclated serodynamic
derivatives are evaluated from records tasken throughout the Mach number
ranges of 0.50 to 1.0% at an altitude of 35,000 feet and O. 50 to 0.81
at 10,000 feet.

The test procedures and analysis methods used are essentially the
same as described in reference 1. Transient responses to both rudder
and aileron disturbances are measured and analyzed to give frequency
responses of yawing velocity, rolling velocity, and sideslip angle.
Responses to transient rather than sinusoidal control inputs have been
chosen for analysis because of convenience in meking flight measurements.
While certain serodynamic informetion can be determined directly from
transient time histories, the use of the freguency response concept
allows a more complete evalustion of the dynemic behavior of the air-~
craft. The effects of different modes on the over-all motion can often
be shown more clearly in the frequency plane, especially when these
motions are complicated by structural deformation.

In this investigation, transfer functions with numericsl coeffi-
cients are obtained directly from the measured frequency responses.
Supplementary calculatlons are then made to evaluate those aerodynamic
derivatives that exert the strongest influence on the airplane response.
Data of this type are of particular Interest in the study of airplane-~
sutopilot combinations. Knowledge of the airplane transfer functions is
necessary 1ln the.determination of the dynamlc characteristics that are
required of an autopilot to satisfactorily control the aircraft.

Wherever possible the results of these tests are compared with

predictions based on wind-tunnel and theoretical data and also with the
results of other flight tests.

NOTATION

CL 1ift coefficient

C: rolling-moment coefficlent
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yawing-moment coefficient

side~force coefficient

th ator _d.'.
e gper (dt>

moment of inertia about the X axis, slug-feet sguared
moment of inertis sbout the Z saxis, slugrféet squared
product of inertia, slug-feet squared

real and imaginery parts of a complex quantity

wing ares, square feet

velocity, feet per second

welght of airplane, pounds

wing span, feet

scceleration due. to gravity, feet per second squared
T

massﬂof airplane, slugs

rolling velocity, radiens per second

dynamic Ppressure, pqungs per square foot

yawing velocity, radians per second

time, seconds

angle of attack, degrees

sideslip angle, radians (except as noted)

flight path angle, degrees

control deflection, radians (except as noted)-

" total sileron deflection, radians
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rudder deflection, radians (except as noted)
damping ratio

root of the characteristic equation

real part of a complex root

angle of bank, radians

phase angle, degrees

angle of yaw, radians

frequency, radians per second

natural frequency of oscillation, radians per second

undemped natural frequency, fadians per second

oCy

S5757)? per radian

aC
Wﬂ, per radian

aC
5513 per radian

dCn .
ST6/27)? per radian

c
gEE, per radian

3

5 ° per radian

3¢,
557 per radian

C
gEE’ per radian
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aa—?—, per radian

oC
gﬁl’ seconds squared per radian

gsp®

iy Cz 2 :pe._r‘- second

b

> .
%_VIS% C_-Lr, per second

-:%is-g CZB, per second squared

2
%VS_;i Cn_p: per second

2
gas5b"
oVIg Cnr’ Per second
g5b

Iy CnB, '_EJ_er second squared

a8
- GIB, per second

Ty Cy 5 pE second squared

ei51:]

Ty Cns, per second squared

%‘% OYS, per second

Ixz
Ix

2

cos 7, per secand

g
\'
‘Ef sin 7, per second
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6 k siunqug? X

Ip'  Ip + rx¥p
Lg? Lg + rxNg
Np! = Np + rple
Ng! Np + rglg
Lg' Ly + 4l

TEST EQUIPMENT

The test airplane was a standard North American F-86A-5 with exter-
nal instrument booms added as shown in figures 1 and 2. The physical
characteristics of this airplane are described in teble I.

Standard NACA instruments were used to record airspeed, altitude,
rolling snd yawing velocities, normal acceleration, angle of attack,
sideslip angle, and rudder and aileron positions. All recordings were
synchronized at O.l-second intervals by a common timing circuit. The
true Mach number was obtained from the nose-boom alrspeed system
described in reference 2.

»

Rate gyros were used to measure yawing and rolling velocities gbout
the reference axes of the alrplane. The yaw rate gyro had & range of
0.5 radians per second and a natural freguency of 10 cycles per second.
Corresponding values for the roll rate gyro were 2.0 radisns per second
and 18 cycles per second, respectively. In both cases the damping ratios
were approximastely 0.7. Sideslip angles were measured by a vane-type
pickup and recorded on an oscillograph. Rudder and aileron deflectlons
were measured by control position recorders that were linked directly
to the control surfaces.

The dynemic characteristics of recording instruments are of extreme
importance in investigations of this type. A flight record in general
contains the comblned response of the airplane and recording instrument.
If the instrument has & linear second-order response with known damping
ratio and natural freguency, then its response can be subtracted from
the combined response in the frequency plene. Obviously, 1t is desira-
ble to use instruments with characteristics such that the necessary
corrections are s minimum (i.e., high natural frequency end damping reatio.
of approximately 0.7).
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The two rate gyros (rolling and yawing veloclties) used in the
present investigation were considered to be very satisfactory in this
respect and no corrections were gpplied to the data. Because the
response of the sideslip vaene, however, was unknown and suspected to be
nonlinear, results obtained from this instrument were not considered
relisble at high frequencies. The control position recorders (aileron
and rudder) also hed unknown frequency responses but tests of similar
installations have indicated very high natursl frequencies, so they
were assumed to give valid records over the freguency range of interest.

TEST PROCEDURE

The flight procedures consisted essentlially of recording airplane
responses to both aileron and rudder disturbances. Pulse-type inputs
were used in all but one flight run. All flights were made at altitudes
of 10,000 end 35,000 feet in the Mach mmber ranges of Q.50 to 0.81 and
0.50 to 1.0%, respectively. The corresponding trim 1ift coefficients
varied from 0.17 to 0.07 and 0.51 to 0.12, respectively.

When one control was specified as the dlsturbing element, the other
control was held fixed during the entire msneuver. After gpplication of
the pulse input, both controls were held fixed until the oscillatory
motion of the aircraft had essentlslly subsided. The alrplane responses
used in the snalysis were rolling velocity, yawing veloclty, and side-
slip angle. Sample time histories of the responses of the quantities
to the appropriste control imputs cen be seen in figure 3.

A1l flight runs at speeds below a Mach number of 0.95 were mede in
trimmed level flight, but to obtain data at the higher speeds 1t was
necessary to dive the airplene. Flight altitudes changed &85 much as
2,000 feet during each diving run slthough there was little variation
In Mech noumber. FOF Bnalysis purposes the altitude and dynemic pressure
were assumed to be constant at their average values during each run.

METHOD OF ANALYZING EXPERIMENTAL DATA

The basic method used in the anelysls of the transient flight data
was described fully in reference 1 but is briefly summarized here.
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The eveluation of the transfer functions that describe the motions
© of the airplamne were carried out as indicated in the sketch:

C;) Transient dats (:) Computer output
tla :
I . - Check
gf /N
| %
T
Fourier ' Anaslogue
transform computer
|
|=/%x | /\
Templates | > /51- = — ap
o D + bD + ¢
. W l -
(é) Fregquency response (:) Transfer function

The transient responses were first corrected wherever necessary soO
that the measurements would conform to the stability axes notation that
is commonly used. This correction is explained in sppendix A. The data.
were then analyzed to obtain the Fourier transformetions by means of an
TBM machine calculasting method employing an adaption of Simpson's rule.
These calculations were carried out at a number of frequencies between
0.5 and 16 radians per second. The resultant frequency responses were
plotted as shown in the form of emplitude ratios and phase angles.

As discussed in sppendix B, the type of input used in flight defi-
nitely pleces a limit on the accuracy of the Fourier analysis of a tran-
gient record. In generel, to obtain the widest usable frequency range
a pulse-type imput should be used. When low frequencies (below 1 radian
per gecond) are desired, a step input is preferable although this type
of disturbance may result in motions that exceed the ranges of linearity.
The method used, while subject to these limitations, is extremely accurate
provided that the flight records are tabulated at enough time intervals
to clearly define the data.

The second step consisted of fitting the graphical frequency
responses to a set of dynamic response templates which define the first-
and gecond-order complex functions 1 + iu end 1l + 28iu - u® where u 1is
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a nondimensional frequency variable and ¢ +the demping ratio. This set
of templates, as described in reference 3, contained one pair of first-
order curves (amplitude and phase) and a family of second-order curves
with different values of the parameter . By combining templates in

the proper manner it was generally possible to find one combination that
would closely match both amplitude ratio and phase-angle plots. This
particular combination defines the equation, with approximate numerical
coefficients, that most nearly describes the graphical frequency response.
This equation is normelly referred to as the transfer function.

The finael step of the analysis involves the use of an analogue com-
puter on which the airplane transfer Pfunctions are set up. If a time
history of an actual recorded control motion is supplied as an imput to
the computer, then the output should be ipdentical to the response
measured in flight. Since the templates-give only spproximate values
of the coefflcients, these values were altered until the output of the
computer satisfactorily matched the experimental time response. Thus,
in addition to refining the results, the computer automaticelly furnishes
a check on the previous computations. : .

After the'transfer functions that describe the various airplane
responses were cbtained, the stability derivatives Cn,, Czﬁ, Cnr’ CZP,
025 » and Cnﬁr were evaluated as explained in a later sectlon.

Og,

RESULTS AND DISCUSSION

The results discussed in the following paragraphs were obtained
from translent time histories as explalined in the previous section.
Flight evaluated frequency responses, transfer functions, and stgbility
derivatives are presgented and compared with predictions based on wind-
tunnel deta and theoretical studies.

Frequency Responses

Plotted in figure % are typical flight evaluated frequency responses
of rolling veloeity, yawing velocity, end sideslip angle to rudder and
also to alleron imputs. These were all obtained at an altitude of
35,000 feet; responses for 10,000 feet showed similar characteristics
and have not been plotted. The purpose of these figures is to show
genersl trends with varying Mach number, end therefore smooth curves
have been faired through the calculated test polnts. In most cases more
than one flight record was anslyzed at each flight speed in order to
check the data for consistency. Only at the highest test speeds (above
a Mach number of 1.0) was there spprecisble inconsistency.

FIDENTTAL
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The responses to rudder inputs have not been plotted at frequencies
greater than 8 radiasns per second because there was considersble scatter
and alsc a lack of well-defined trends in the data at the higher fre-
quencies. The aileron responses, however, &re shown to 16 radians per
second. Wherever necessary for clerity or because of erratic data,
parts of some of the curves have been omitted. The B/Ga response is
shown at only three speeds because of a failure in the sideslip-angle
recording system. -

With minor exceptions, the curves show consistent and gradusl vari-
ations with Mach number. One such exception can be seen in figures 4(d)
and b4(e) where the amplitudes of p/8y and r/8; at a Mach number of 0.61
lack the customary resonant peaks. This 1s the result of time histories
in which there was no osclllatory motion. This unusual characteristic
can be explained by reference to the predicted transfer functions devel-
oped in gppendix C and discussed in the following section. The predicted
p/&a response equation for a Mach number of 0.6 at 35,000 feet is

D _ 21.1(p2:0. 454670
By -~ (D+0.00113) (D+2.203) (D 0. &38D_+7.2;)

It can be seen that the two quadratic terms are nearly identicel and
thus the oscillatory mode is effectively canceled. Since rolling and
yawing motions a&re coupled, the r/8g response must exhibit the same
charscteristics at this perticular speed.

Another interesting point with regard to figure 4(e) is the wide
varlation in phase angles at different flight speeds. Predicted trans-
fer functions indicate that at low speeds (below a Mach number of 0.7)
where Cnsa is negative, the phase angles approach -270° asymptotically
with increasing frequency. Unpublished wind-tunnel data indlcate that
near a Mach number of 0.7 there is & transition in which CnGa beconmes
positive and consequently three of the coefficients in the numerator of
the transfer function change sign. The result is an increase of 180°
in the high frequency phase lag.’ - T

The frequency-response test points derived from flight data at a
Mach number of 0.81 have been replotted in figure 5 which shows all six’
responses for the 35,000 foot altitude and the r/Sr and p/8; responses
for-10,000 feet. These resulté are typical in indicating the degree of
scatter usually encountered in the Fourier ahalysis of a particulsr
flight record. Plotted as solid lines for comparison are predicted
responses that have been calculated using estimates of the various
stability derivatives presented in tasble II, which were obtained from
reference 4 and also from wind-tunnel tests by the manufacturer. These
calculations were made as shown in appendix €, using the exact linear
fourth-order response equatiggs. The syeay nt between measured and
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predicted responses is generally good except, in some casges, at the
extremes of the test frequency range.

In addition to the pulse-type inputs, a step disturbance of the
rudder was used in one instance at a Mach number of 0.8l in order to
more clearly deflne the low frequency portions of the p/&r and r/8r
frequency responses. Resulis of this analysis from 0.1 to 1.0 radians
per second are plotted in figures 5(a) and 5(b) and are discussed in
more detaill in & later section.

Also shown as dotted lines in figures 5(b), 5(c), 5(d), 5(g), and
5(h) are responses computed from predicted transfer functions that have
been simplified as indicated in the following paragraphs.

Thearetical Transfer Functions

It is shown in sppendix C that the characteristic equation A can
be factored into the form :

A = D(D-A1) (D-My) (D3rc Dicy)

where M, &nd A, are the spiral and rolling roots, respectively, and
where c¢, and c, are coefficients that define the oscillatory mode.

By neglecting A, (wvhich is usually very small) and by omltting other
small terms that gppear in the numerators of the various response
equations, three of the six responses may be reduced to the following
simple forms:

- __Bd )
DE;ciD+c2

_Ba } (1)

" DZrciD+cp

F= |

- _As

D-As, )

It is also shown that by making additional assumptions as to rela-
tive magnitudes, the coefficients A, c¢,, and c, can be expressed as
Lp, -(Np+Yg), and Ng', respectively. Furthermore, since Bgz= Ng..'
end Ay = Lg,', equations (1) can be written as

O‘il"d
®

Nar'D

r_ _
5 ~ D(NW+Ip)DHNp" (22)
E_L—.,__ﬁ— %_._-‘4 L 3
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B . oy : (2p)
By  DZ-(Np+Yg)D+Ng' '
I ]
P _ “Ba _
8a  D-Lp (2c)

It can be seen that in equations 2(a) and 2(b) the spiral and
rolling-modes are completely neglected, and yet, as shown in figures _
5(b), 5(c), and 5(g), these simplified transfer functions yield responses
that are almost identical to those obtained from the "exact" equations
for frequencies greater than 1 redian per second. Similarly, the
response computed from equation 2(c) closely matches the exact response
(fig. 5(d)) over the Ffrequency range shown except that it omits the
small pesk normelly associated with the oscillatory mode. The spiral
mode which has been neglected in all three simple equations gppears to
have no effect on the calculated alrplane response except at frequencles
well below 0.1 radian per second.

Experimentally Determined Transfer Functions

In the analysis of the flight data it was found that the freguency
responses of r/8y, B/Sr, and p/da could be successfully simulated by
simple transfer functions of the same forms as equations (1). Solutions
of these equations on the analogue computer, using final "best" values
of the numerical coefficients with actual control motions as recorded
in flight, resulted in outputs that closely matched the measured time
histories of r, B, and p as shown in figure 3. This fact implies that
the modes of motion that are neglected in each case have very little
effect on the time response to a pulse-type input.

By use of the coefficients that best describe the messured time
histories, frequency responses were calculated for comparison with those
derived directly from flight data. Examples of these calculatlons are
shown by the dash-dot lines in figures 5(b), 5(d), 5(g), and 5(h). These
curves, in general, match the experimental points closely for frequencies
between 1 and 10 radians per second. '

The experimentslly determined values of the coefficients A =3 Cys
and c,(using the notation of equations (1)) have been plotted in° figure 6
and are compared to predicted values of the same coefficlents that were
obtained by factoring predicted characteristic equatlons for several
different Mach numbers. To give some idea of the errors involved in the
assumptions of equations (2), predicted values of Ip, Ny + Y, and Ng!
o TRy
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have also been plotied for comparison with the coefficients Aoy €y, and
cp. It eppears that, for this particular airplane, the assumptions are
valid and that the simplified transfer functions form a logical basis
for the evaluation of stebllity derivatives. The flight evaluated coef-
ficients c¢, and ¢, have been transformed into the customary undamped
natural frequency and damping ratio designations and are plotted in this
form in figure 7.

It is gpparent from equations 2(a) end 2(b) that the same informa-
tion can be obtained from either /8. or B/5,.. Coefficlents evaluated
from each of these responses agreed favorably in most cases; however,
because of indications that the yaw rate gyro possessed dynamic charac-
teristics superior to those of the sideslip vane, only the yawing veloc-
ity responses were used in the final calculations.

The transfer functions of the three remaining responses p/Sr, r/Sa,
and 5/6a were not amenable to simplification. However, it was found
that the p/Sr respohse could be matched satisfactorily by a transfer
function of the type '

_ a;(D+ay) (D+ag)
8 (D-Ap) (D3+c,D+cy)

which 1s the same form as developed in apperdix C except that the spiral
mode has been neglected. As written here, a; is identical to Lar'
while a, and ag are complicated combinations of derivatives that can-
not be readily simplified. Although this equation closely describes ‘the
measured time histories (fig. 3), it was difficult to find unique values
of the numerator coefficients. Changes in one of these could be compen-
sated for by corresponding changes in the other two, and the values were
not considered to be relisgble enough for presentation.

Definition of the r/%, and B/8, responses required fourth-order
transfer functions that include all three modes, and because of practical
difficulties involved no attempt was made to evaluate the coefficients
of these responses. -

Stability Derivatives

In addition to the gquantities LP’ N + YB’ NB', Narg and Lsa’, that
were determined as mentioned in the preceding paragrsphs, the coefficient

LB' was evaluated from the time histories of rolling and yawing velocity
as shown in reference 5. " This method is briefly outlined in sppendix D.
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The quantities NB’ LB’ Nﬁr’ and LBa cen then be calculated from
Ng', Lp', Nar', and L5a' by using the following expressions cbtailned.
from the relationships developed in gppendix C:

| - t
Np'-Tzig
l"I‘X}"Z

Ng

Ly = Lg'-ryNg!
l-rXrZ

f -
Ny = Nor Tzley | -

r l-ryry
L | - ?
o] R
a 1"1’er

Because ry and ry are very small quantities, wind-tunnel estimates
of Lﬁr' were assumed to be sufficiently accurate to use in the calcula-

tion of Nﬁr' The term rXNSa' was completely neglected in evalua-
ting LBa' :

Finally, from the definitions given in the notation it is possible
to evaluate the derivatives C C C and C . '
Clp’ nB: IB: nﬁr: zaa

The analysis methods used herein do not allow the separation of the
damping term Ny + Yg. As compared to Ny, the term Yp 1is small and
can generally be predicted accurately from wind-tunnel measurements.
Therefore values of Cy given in table II were used in calculating

Cnr from the quantity N. + YB

The flight evaluated derivatives for both altitudes are plotied
against lMach number in figures 8 and 9. These are compared to the pre-
dicted values listed in table II. Through the speed range of the test
the predictions for both altitudes are essentially the same, except as
noted in the plot of CIB. .

’

The correlation between predicted derivatives and those evaluated
from flight at 35,000 feet is generally good except, in some cases, at
speeds near a Mach number of 1.0 where the predictions are apt to be
inaccurate. Unpredicted variations with altitude are also apparent in
the flight values of ., Ca, and Cp At a Mach number of 0.8 the

8

‘”’ml meo
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value of Cp, for 10,000 feet 1s less than one half the value at 35,000
feet. Flight data of reference h_when expressed in this form show a
similar trend. The plot of Cn5 indicates the same tendency to &

r
lesser degree, while the 10,000-foot value of C (at M = 0.8) is some
50 percent higher than the value at 35,000 feet.

Values of (3 determined in the present investigation agree favor-
ably with wind-tunhel results, while those reported in reference 6
(obtained from static flight tests of the same airplane) are much smaller
in magnitude. It appears, however, that the results of reference 6 are
subject to error because of the simplifying assumptions made. A more
rigorous approach would have resulted in larger values of this derivative.

Examination of figure 9 shows the control effectiveness derivatives
CnSr end 018 to have similar variations with increasing Mach number,

a
and in each case the measured values are generally smaller than predicted.
Values of Cla obtained in the present investigation agree closely

a
with those presented in reference T which again were evaluated from
flight measurements of the same airplane.

In this investigation there was no evidence of nonlinear variations
of rolling or yswing-moment coefficients with p, r, or f. This was
concluded because (1) the period and damping of the oscillations fol-
lowing a control inmput were essentially constant in every cease (no
systematic variations with amplitude), and (2) the experimental time
histories could be matched, in general, by differentisl equations with
constant coefficlents.

No conclusions are drewn as to nonlinear moment coefficient varia-
tions with ©g5 or &, because the magnitudes of the control inputs were
not varied appreciably during the tests. They were small enough, however,
s0 that it could be assumed that the linear ranges were not exceeded.

Aeroelastic Effects

Although the present investigation was not conducted for the pur-
pose of studying seroelasticlty, the test results do show the influence
of structural deformetion as indicated in the discussion that follows.

EBffects at high frequency.- The frequency-response measurements of
p/8g ~indicate a mode of motion at high freéguencies that is not consis-
tent with the rigid-airplane equations given in gppendix C. According
to these equations, the amplitude of this response should gpproach zero
(at a slope of -1 on a logarit c plot) as frequency increases, while
the phase angle spproaches - ly. Exeminatlion of
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figure 5(d), however, shows an increase in phagse angle and a gradual
decrease 1n esmplitude attenuastion at freguencies gresaster than 10 radians
per second. These data indicate the presence of an additional high
frequency mode which conceivebly could correspond to the primsry bending
frequency of the airplane wing (about 8 cps). A mode of this type can
be included in the equatlons of motion, in general, by introducing
addlitional degrees of freedom which will relate the mass asnd stiffness
characteristics of the wing to actual motions of the alrplane. TFrom
purely geometric considerations, bending of a swept-back wing 1s accom-
panied by a change in angle of attack and, when the motions of the two
wing panels are out of phase, there is a resultant rolling moment. Thus
it is reasonsble to expect wing bending or twist to have a noticeable
effect on the rolling response of the alrplane.

Effects on flight evaluated stability derivstives.- Test values of
C1y shown in figure 8 indicate a variation not only with Mach number
% also with altitude (dynamic pressure) which may be the result of
inertia loading.

When the airplane is accelerated in roll, inertia forces cause the
two wing pasnels to bend in opposite directions. The resulting angle-of-
attack variation produces a moment that tends to modify the rate of roll.
This effect can be considered in the basic eguations of motion by the
introduction of 9C,;/0p, the variation of rolling-moment coefficient with
rolling accelerstion. Then letting

9sb oc
Tx

o/l o/
*d-L

I@ =
equation (C4) may be written as
[(l-'I@)De-I@D]CPH-rkDa-ITD)w -Lgp = Ly, Ba

It should be noted that the inclusion of Ly is analogous to a change
in the moment of inertia sbout the X exis.

If each term is divided by (1 - Lp) then this equation 1s parallel
in form to equation (Ch), and the simplified transfer function for /6,
becomes

p _Loa/lTp

Ba D-ZLP71-L§5
Thus it asppesrs that the two derivatives as evaluated from flight data
are actually C}p/(l - Lp) and czﬁa/(l - I$). For a swept-back wing
L@ is a positive quantity that increases with dynamic pressure; so the
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measured values of the two derivatives should also increase with dynamic
pressure.

. The test measurements of Cj clearly show this trend, but in the
case of CZ5 there was no gpprecleble veriation with altitude. Theo-

retical stud?es, however, and also wind-tunnel tests of flexible models
(such as described in reference 8) have clearly indicated that, in the
absence of inertia loads, the aileron effectiveness will in general
decrease with increasing dynamic pressure, the primsry contributing
factor being the torsional flexibility of the wing.

It has been shown in reference 8 that the derivative (3 will
also vary with dynamic pressure. For straight wings there wiRl generally
be en increase in the negative value of Cj.,, while for highly swept-
back wings there will be a decrease. Presumsbly there is an intermedisate
sweep angle at which there is essentially no variation in Cj;_  with
dynamic pressure. P

In order to substantiate this hypothesis regesrding the effects of
elagticity, numericael calculations were made using the method of refer-
ence 9 to estimate the variations with dynemic pressure of the quanti-
ties CZP: Clsa: and Ip. These calculations were based on information

supplied by the manufacturer regarding the mass distribution and stiff-
ness of the alrplane wing. While not agreeing gquantitatively with the
measured varlations, the results did show the same trends with dynamic
pressure that were observed in the flight evaluated derivatives. More
specifically, the calculations indicated that Claa decreases much more

rgpidly with Increasing dynamic pressure than does Cyye Furthérmore,
the variation of (1 - Lp) was approximately the same a8 that of Cig.*

This indicates that an increase in the effective derivative (3 /(l 2 Lp)
with dynamic pressure can be expected even though there is little varia-~

tion in Cyp /(1 - Ip).

Similar arguments may be advanced to explain the altitude variations
that were noted in Cn, end Cpy . Theservariations could be the result

of distortions of the fuselage =nd tail due to inertia and aerodynsamic
loadings.

Response at Low Frequency

As mentioned in an earlier section, responses to & rudder step
disturbance were recorded in flight in order to check mainly the low
frequency portion of the r/Sr frequency response (0 to 1.0 radians per
second). As shown in figure 5(b), the results of this analysis verify
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c e hd - -

the prediction of a sharp attenuation in asmplitude at a frequency of 0.4

radians per second. A step Input was used in this particular case because

1t gives much more accurate results at low frequencies then a pulse imput. .
The gquestion of control inputs is discussed more fully in appendix B.

Although not shown in figure 5(b), the zero frequency (steady-state)
amplitude of r/Sr was measured to be 1.44 as contrasted to a value of
169.0 predicted from the exact equation. Similarly, the steady-state
amplitude of p/&, was measured as 1.75, while the theoretical equations
indicate that this value should be zero. These discrepancies can be
partially explasined in view of the following discussion.

The linear equations of motion used herein are valid only for small
enguler displacements. When the step disturbance was spplled in flight,
an angle of bank of approximately T0° was reached before the motions of
the airplane became steady. In the side force equation (equation (C6))
the term K,¢ 1is actually & linear spproximation of X; sin ¢ and
obviously is valid only for small bank angles. To determine the effect «
of this nonlinearity on the predicted alrplane responses, tlme histories
of p, r, and ¢ were calculated on an anslogue computer for a rudder
step input of the same megnitude as applied in flight. Predicted values . ¥
of the various stabllity derivatives were used and solutions were obtained
first with the linear gpproximetion K,;¢ &and next with the nonlinear
K, sin @. Results obtained from the nonlinear equation indicated that
the rolling velocity response would reach a finite steady-state magnitude
as seen in the flight record. In.the case of the yawing velocity
response, however, the effect of the nonlinearity was such as to reduce
the steady-state value somewhat but not nearly enocugh to account for the
extreme difference between flight measurements and predictions.

The relationship of 'spiral damping to the zero frequency amplitude t
offers another possible explanation for this discrepancy. Although the
basic anelysis methods used in this report give no informastion concerning
the spiral mode, predictions indicated that at a Mach number of 0.8 at
35,000 feet the spiral root was -0.000T70 which leads to the previously
mentioned steady-state magnitude of 169.0 for r/8p. The subsidence of
this mode was clearly measursble, however, in the yawing velocity response
to the rudder step inmput. A line was drawn through the center of the
free oscillations to represent the spiral mode and the root was measured )
as -0.07 instead of -0.00070 as predicted. -

This measurement was verified by examining recorded time historiles
of yawing velocity responses to aileron pulse inputs (e.g., fig. 3(b)).
On eight flight records taken at Mach numbers between 0.5 and 0.9 the
spiral root was found to very from -0.06 to -0.09. It can be seen that -
the discrepancy in spiral subsidence is of the same order of magnitude
as the discrepancy in steady-state magnitudes of r/Sr.
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In the characteristic equation the coefficient C, 1is generally
very small as compared to C,, and thus the theoretical splral root can
be expressed quite accurately as simply -

C
M o= 'cl (3)

which is approximately the same &s

K (LpNg-NyLg)
R =

A1l the quantities on the right side of this expression except IL,. have
been determined experimentally and found to agree reasonsbly well with
predicted values. Even though the term LrNB - N.L represents a small
difference of two lsrge numbers, it 1s inconceivgble that the errors in
NB’ Ny, or L can be of sufficient magnitude to account for the large
deviation in the spiral root. Therefore it appesrs that this discrepancy
mist be at least partially due to an erroneocus estimate of I,.. By
rearrenging terms in equation (4)

(&)

M NpL
R e

Using experimental values of all quantities on the right-hand side for
the case of 0.8 Mach number at 35,000 feet results in a value of -%.2

for I, as contrasted to the original prediction of 0.8kk4. Further
study showed that the resulting value of L, was not gppreclably changed
by using more exact expressions in place of equations (3) end (4). Then
assuming that all experimentally determined values on the right-hand side

of equation (5) are correct, Czr must have a velue of -0.537 rather than
0.108 as predicted.

Effects of Minor Derivatives, Product of
Inertia, and Flight-Path Angle

The results of this report indicate that a knowledge of CnB, ClB’
Cp.., and GYB is sufficient to define the oscillatory mode, that the
rofling mode is primarily a function of C;_, and that the spiral mode
is defined by Czr’ CnB, Cny.s CIB’ and CIP- Therefore 1t would gppear
that C has little effect on the dynamic behavior of the test air-

Plane and that Clr influences only the spiral mode. Because deriva-
tlves such as Cnp and Cy, are usually difficult to estimate, the
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question may arise as to whether large changes in either of these deriva-
tives will sppreciably alter the airplane stabllity. If erroneous esti-
mates of Cp, and C3, had been used in this report, would the simplifi-
cations made in sppendix C still be valid? Similar questions may arise
regarding the effects of product of Inertia asnd flight-path angle. For
this reason teble III has been prepared. This table shows the menner in
which radical changes in each of the above-mentioned quantities will
effect the roots of the characteristic eguation. In this example, theo-
retical data for & Mach number of 0.5 and an altitude of 35,000 feet were
used. Sample calculations have shown that at this speed and altitude the
effects to be considered are more extreme than for any of the other flight
conditions covered in this investigation. __

Examination of table III shows trends that have been verifiled in

nany other investigations of this type. Extremely large changes in
C result in variations of all four of the roots although only the
oscillatory damping is greatly affected. On the other hand changes in

s &8 previously intimsted, cause large variations in only the spiral
daﬁping. Variations in Iyxy appear to influence all the roots except
the spiral root, with the largest effect on the oscillatory damping.
Finglly the introduction of a flight-path angle into the equations changes
the spiral root radically, but even for an angle of -90° there is very
little effect on the other roots.

Looking at table III from a different point of view, it can be seen
that the oscillatory demping is influenced to some exbtent by each quan-
tity considered and thus i1s often difficult to predict accurately. This
obviously means that the expression Ny + YB mey not always be adequate
in defining the oscillatory damping.

CONCLUDING REMARKS

A flight investigation has been performed on a 35° swept-wing fighter-
type airplane in which dynamlic lateral~ and dlrectional-response charac-
teristics were measured. Transient-type responses to rudder and alleron
disturbances were recorded at altitudes of 10,000 and 35,000 feet in the
Mach number ranges of 0.50 to 0.81 and 0.50 to 1.04, respectively. From
the results of the analysis of these data, the following statements can
be made.

Alrplane responses in yawing veloclty and side-slip angle due to
rudder disturbances can be represented by Second-order transfer functions
that are related soclely to the oscillatory mode. Simple first-order
equations adequately define the rolling veloclty response to an aileron
input. It was found that these equations would closely define an entire
megsured time history and also describe the corresponding frequency
responge through the range of J to 10 r 8 per second.
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Fourth-order transfer functions calculated from the basic equations
of motion using wind-tunnel and theoretical estimates of the various
stabllity derivatives can be simplified by neglecting small quantities
and by meking spproximate cancellations until they are of the same form
as those evaluated from flight data. Furthermore, it was possible to
express the coefficlents of these transfer functions in terms of indi-
vidual stability derivatives. Frequency responses computed from these
simplified equations were almost identical (between 1 and 10 radians per
second) to those computed from the exact fourth-order transfer functions,
and when compared with experimental results there was generally good
agreement. Thus it is concluded that the simplified transfer functions
form a relieble basis not only for estimating sirplane responses hut
alsc for the flight evaluation of stability derivetives. The methods
used here are felt to be sufficiently general to apply to any conven-
tional alrplamne, with some reservation regarding the accuracy of the
evaluation of Cny.e

Experimentel values of the derivatives CnB’ CIB, Czp, Cny.s Cnsr,
and CZSa compared favorebly with predictions, based on theory and wind-
tunnel measuremefits, st Mach numbers below 0.95, while at hlgher speeds,
where predictions are questionable, there was some deviation. There were
glso notable discrepancieg in flight values of Gz and Cﬁr, obtained at
the 10,000 foot altitude, which were attributed to structural deforma-
tions resulting from serodynamic end inertia loads.

When the Fourier anslysis for :p/Ba was extended to frequencies
beyond 10 radians per second, the frequency response showed evidence of
aercelastic deformation which sppeared as an additional mode of motion
not consistent with rigld airplane theory.

As the frequency epproaches zero the spiral mode becomes the pre-
dominant factor in the airplane response. The spiral root was measured
as -0.07 (at a Mach number of 0.8) which is meny times greater than
predicted. To satisfactorily account for this large discrepancy would
require a negative value for Czr which is contrary to theoretical
estimates. .

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Celifornia
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APPENDIX A

TRANSFER OF AXES

The equations of motion normally used 1n alrplane dynamics are
based on a system of axes fixed in the alrplane in which the X axis is
the intersection of the plane of symmetry and s plane perpendicular to
the pleane of symmetry that contains the relative wind vector. These are
normally referred to as stabllity or flight-path axes. The angular dis-
placement between the X axis and the reference axis of the alrplane is
equal to the angle of attack. Since recording instruments are generally
alined with the reference axis, measurements of angular displacements
and rates must be corrected to conform to stabllity axes notation as
indicated in the following sketch taken from reference 5. Here ¢ and

¥ are vector components of the resultant rotation of the airplane and
the subscript 1 refers to the reference or body axes.

Resultant
motion

From the sketch 1t can be seen that

=9, cosa + ¥y, sina

¥

¥, cosa - @, sina
Sideslip angles can be transformed by the relation
B =B cosa

For mest purposes these conversions need be made only when the
engle of attack is large. In this investigation 1t was found that the
corrections to rolling velocity responses could be neglected in all cases
because, for either type of input, the response in yaw is small compared
to that in roll. In the case of the yawing velocity records, however,

i‘ﬁﬁﬁﬁﬁﬁﬂggé;; '

e
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corrections were necessary. When a rudder imput was used this correction
was negligible at those speeds where angles of attack were less thai 20,
but in the case of the yawlng responses to aileron imputs the conversion
had to be made at all speeds. The correction to B was neglected in
every case.
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APPENDIX B

,CONTROL INPUTS

When frequency responses are to be calculated from transient records,
care should be given to the choice of a suiteble forcing function. The
frequency range through whlch accurate transformations can be obtained
is definitely limited by the shape of the confrol imput. Theoretically,
& pure impulse (zero time duration) is the most desirsble input for all
purposes because it gives uniform excitation to the entire frequency
gpectrum. The transform of a step input, on the other hand, has a mag-
nitude that varies inversely with frequency and thus gives infinite
excltation to the zero frequency component at the expense of the higher
frequencies. .

The nearest physical spproach to g pure impulse 1s an imput that is
roughly triangular in shape as shown in the sketch:

slope =

e — £

Letting &a equal the slope and T equal the tlme base of the triangle,
the Fourler transformation of this input can be cbtained from the relation

8(iw) =/m8(t)e‘Wtdt

o]
Integration results in a transformation with the following real and

Imgginary parts:

_ 2a iy wT
_2a . wl ( Wl _ )
I === s8in ——2 cos ? (32)



4Y

NACA RM A52T17 - [ TAT, 25

The magnitude of the transformation is then

IBI = 2% 1 - cos %?

It can be seen that [8[ is periodic and is zero when w = hx/T,
8ﬁ/T, eeess At these frequencies the transform of the response to this
input would also be zero, and thus the ratio of output to input would be
indeterminate. A reduction in T would increase the period and reduce
the number of indeterminaste points. This is shown In figure 10 where
the transform msgnitudes of two triangular pulses are plotted. One has
T = 1 second and a = 4, while the other has T = 1/2 and a = 16. The
areas under the two triangles are equasl so that thelr transforms have
equal magnitudes at zero frequency. Reducing T from 1 second to 1/2'
second doubles the period and moves the first indeterminate point from
a frequency of Urx radians per second to 8x. For purposes of ccmpari-
son, transformations of a unit step and & unit impulse are also shown.

As T is further reduced, the magnitude of the itriangular pulse
more closely approaches the constant value that is characteristic of the
pure impulse. To gain full advantage from the smaller T, the slope
must be increased to meintein the same area under the pulse. A practical
limitation is fixed by the maximum rate at which a control surface can
be moved, and any further reduction in T results in smaller over-all
megnitudes. The most desirable input, therefore, is a compromise between
large area and short time duration.

From figure 10 it would appear that.a pulse-type input is well
sulted for determining low frequency characteristics. However, the
following explanation will show that this is not true.

Generelly it is impossible to return a control surface precisely to
its initial position after spplication of a pulse input. Even if a chain
stop or other device is used there 1s still apt to,be & small residual
deflection after time T as shown in the following sketch:

81— —
)

b
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If 3, 1is exactly zero, then as w approaches zero (from equetions
(B1) and (B2))

Now if &y is finite, the real and imaginary parts of the transform of
the entire input are - . :

w2 2 -
_2a wl - wl) _ 32
R =03 cos 5 (l cos 2) o sin T

In this case as w —> 0,
I—>w

2

R —> 5= - 5T ‘
thus the zero frequency magnitude is infinitely large regardless of how
small &, may be. Therefore, even though 8> appears to be zero on a
flight record (i.e., 8, 1s less than the least count of the recording
instrument) there is still the possibility of an infinite error at zero
frequency. A step inmput is not subject to these large low frequency
errors; an error of 1 percent in the reading of the step deflection
merely means an error of 1 percent in the transformation.
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APPENDIX C

PREDICTED ATRPLANE RESPONSES

EQUATIONS OF MOTION

The three equations that define the lateral and directional motions
of an asirplane with respect to stability axes such as developed in refer-
ence 10 may be written as:

(50 - 3 Bp)o +omn® - o0 i By D) v - am oy p - amcrgs
<'IXZD2 - quCnp :Z‘_V' ) ?+ <IZD2 - aSb Cp,. b'z—v'D) ¥ - asb CnBB = a5b Cngd
T i (c2)

(-w cgi/?’)q) + (mvD - W sin 7)1&' + (mVD. - q,SC\_fB)B x qSCYa (c3)

"\0 — Y

By dividing equation (Cl) by Iy, equation (C2) by Iz, equation (C3) by
mV, and by introducing new symbols, the three equations can be written
in the more convenient form that follows:

- LpD)¢ + (-rgD® - LyD)¥ - Lgp = Lgd (ch)
(-rzD% - FD)® + (D% - WyD)¥ - NgB = NeB, (c5)
K@ + (D - K)¥ + (D - ¥p)B = Ygd - (c6)

CHARACTERTSTIC EQUATION

The characteristic equation A is formed by expanding the major
determinant to give

= D(CgD* + CgD® + CoD2 + C;D + Co) (c7)
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wWhere . .. . D

C, =1 - ¢y
Cg = -Lp - Nr - ¥p(1 - ryry) - rxlp - vzl

Cy = (Np + rZLr)‘YB + (Lp + rylp)¥g + (IpNy - NPLI-) + (Ng + rglg)

¢, = ~(Ighe - Nplo)¥p + (Lglp - Nalp) - Ky(Ip + zghig) = K,(Np + Tlp)
Co = Ka(LrNg - Nrlp) - Ko(LpNp - Nplp) - .

These coefflcients can be further simplified by meking the following
substitutions:

Let
+ I'jdq-p Nr'
LB + I'XNB NB'

Then the coefficients of the characteristic equation are finaglly expressed
as

Nr + I‘ZLr_
NB + I‘Z{:B o

nn
o

t
2

Q
|

=1 - rXrZ

Q
]

s = “Ip' - Np' - Yg(1 - ryry)

Co = (Np' + Lp')¥p + (Iply - NpLy) + Ngt
G = ~(Lply - Nplr)¥p + (Lglp - Nplp) - Kylg' - KoNg!
Co = -Ky(LyNg - NyLg) - Ky(LgNp - Nplp)

In factored form, equation (C7) is
A =D(D ~x) (D =-2p) (D -25) (D-2)
where M; and A, are designated as the spirsl and rolling roots, respec-
tively, and where X\g and A, are a complex pair (o % iwl) that describe
the oscillatory mode. i :

For couvenience in this investigation A has been expressed as

A =D(D - A1) (D - rp) (DZ + 4D + cp)

L el
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where

1

Here ¢, and c, are redl coefficients that define the demping and period
of the oscillastory motion.

The gquadretic term may alsoc be written in the form

2
Wy (l + 2;% + %)

where
iy = 2
. c
and . ;:.__J_-.
g

SIMPLIFICATIONS OF .THE CHARACTERISTIC EQUATION

In the speclal case when the flight-path angle ¥ 18 zero and when
the product of inertie is very small, it is often possible to neglect
Co and, by DEgrecting other smell terms, the characteristic equation
may be written as

A= Dz[Ds - (Ip + Ny + ¥Yg)D® + (Lp¥p + LpNy + Np)D - LPNB:I
The cublc term can be factored exactly so that

A =D3(D - LP)-[DZ' - (Ny + Yg)D + NB] o

This form of the characteristlic equation considers only the oscillatory
and rolling modes. It enables the coefficients C;, Cy, and C; to be
expressed directly in terms of gerodynamlic derivetives or sinmple com-
binations thereof. :

Even when the product of inertia is significa.nt the characteristic
equation may be factored spproximately into the comparegble simple form

A = ﬁé(!)_- Lp) [Da ~ (Nr+'Y.B.)D + NB']

While the factorizetion is not exact, it is nevertheless justifiable
in many cases.
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TRANSFER FUNCTIONS

From the three equations of motion the ailrplane responses in g,
Vv, and B can be readily calculated. In the following equations, &
refers to either an aileron or s rudder disturbance.

AéD? + AD2 + AJD +Ag
= . A'. . ~ .

ol-e

where

Ls'_+ I'XNS

A
I

= -LS(YB + NI‘) + NE(LI' - -I'XYﬁ) +/¥5’L/é'

Lg(Nr¥g + Np) - Np(lp + Lr¥p) + Y5(LrNg - NyLg)

o
H .
i

= Kp(Nglg - NgLs)
T 0
_ BaD® + BaD® + BaD + By
A,

oo
o
!

orl€--

where

o]
(1]
L]

- Mg + Tyl

-Ng(Ip +Yg) + Lg(Np - Tz¥p) + Yolig'
- Tofgty - L * Yol - Tplp)

= K; (Lglg - Nalp) '

"
n
i

:/
o)

[

|

o
o .
[

5 DEP + BB + B+ By)
5~ N

=
@
|

= Ys(l - rxrz)
» = Tg(Npt + L") - Lgry = Ng

To(Lply - Nolyp) - Lo(ip - rgk, - K;) + Na(ryky + Lp + K)

e
1]

=
=
I

gl
&
Q
]

K3 (Ngly - LgWy) + Kao(Lg¥p - Nalp) o

—

-

=0

\
y

(W
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Slmplifications can also be made in these expressions by neglecting-
small quantities; however, this can be shown more clesrly in the numeri-
cal exampie that follows.

NUMERICAL EXAMPLE AT M = 0.8

' Using values of stabllity derivatives shown in teble ITI, and with
? = 0, predicted responses for p =D@, r =D¥, and B for both aileron
and rudder imputs have been calculated and found to be

A =D(D* + 3.652D% + 15.16D2 + 41.26D + 0.0289)

D(D + 0.00070) (D + 3.078) (D@ + 0.573D + 13.40)

r _ -7.60D(D + 3.091) (D3 + 0.0270D + 0.208)
By A

P _ 5.16D3(D + 4.436) (D - 5.210)
A

B _ 0.0339D(D + 3.053) (D + 225.3) (D - 0.00703)
5r A . - -

r _ 0.699D(D +,3.978) (D2 - 1.758D + T7.358)
Bg A

P _ 36.4D3(D2 + 0.655D + 13.68)
S A

B _ 0.0008D(D + 0.990) (D - 1.09%) (D - 870)
A
By neglecting small terms, r/Sy can be expressed as

T o_ -7.60D3(D + 3.091)
8, D2(D + 3.078) (D2 + 0.573D + 13.50)




e L

=“I=ii

and then by an spproximete cancellation this reduces to
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r . -7 .60D
5y DZ + 0.573D + 13.%0

Similerly, B/Sr can be simplified by neglecting small terms so that

B - 7.64D(D_+ 3.053). - 7.64
& D2(D +-3.078) (D2 + 0.573D + 13.40) = D2 + 0.573D + 13.40

It can be seen that this expression for B/Sr is practically indentical
(with opposite sign) to the integral of the simplified equation for
r/&r. It is also possible to simplify p/Ba as follows:

2 - 36,407 (D2 + 0.655D + 13.68) ~  36.k4
8, D2(D + 3.078) (D2 + 0.573D + 13.50) = D + 3.078

Similer simplifications have been mede for other Mech numbers and
found to be equally wvalid. :

Eovmmrat
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APPENDIX D

FLIGHT EVALUATION OF C,; B

From time histories of the free oscillatory responses of p and r
it 1s possible to evaluate the derivative C; provided the derivatives

Cp, 8nd Cy are known. The method employed isg explained in some deteail
dn referenge 5 and is briefly summerized here.

When the three equations of motion are set equal to zero and written
in determinant form, expansion of the appropriate minor determinants
about the third row yields cofactors of @ and V.

The cofactor of @, Gp is

Cp = (ryD® + LD)Ng + (I - N.D)Lg
= D[LB'D + (LI‘NB - NrLB):I

The quentity LrNB - NrLB is generally very small and Ctp can be closely
approximated as

Cp = Lg'D®
The cofactor of ¥, Gy 1is
G = ~(D2 - LD)Ng - (xzD® + WD)

» [NB'D - (IpNg - NpLB)]
In this case the term NPL is small compared to LPNB and the expres-
sion for Cy can be approximated as :

- o 1 -
Cy DN g (D Ib)
The ratio of the two cofactors is then
Co - Lg'D
Cy -Ng'(D - Lp)

When the complex root Ag = o + iw,; 1is substituted for the operator D,

this expression is the ratio of the free oscillatory responses of ¢ and
¥ at any time +t. The ratio of p to r is obviocusly the same and can

be expressed as
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-LB'<U + iwl)
NB'(G + 1wy = Lp)

2
r
The actual magnitude of this ratlo is

_ Lg' o2 + w, &
Ng' /(o - LP)Z + w2 : | -

In this form |p/r| is the ratio at any time' t of the amplitudes of
the envelopes that enclose the oscilllatory motions of p and r; ¢ is the
rate of deamping of the envelope; and wi 1s the natural frequency of
oscillation. When o 1s very small as compared to w; it can be omit-
ted; thus

P

r

.|E| - Lgw Lg'
r
Ng

= — =B
ViE e Mgt v (ple)®

If I\TB' and. IP are known, 1t is then possible to evsaluate LB' from
measured time histories of p &nd r. |
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36 NACA RM AB2I1T
TABLE I.- PHYSICAL CHARACTERISTICS OF TEST AIRPLANE
Wing

TOLEL BTEA o o o o « « o o e o o o s o o o o o o« s o« « 287.9 8g £t
@an. . - L] - [ ] L3 o - L] L] . L ] - . . * L ) L 3 - * - - - - - L ] - 3‘7.1 f’t
ASpect r&.‘bio e &4 & e & o & o o o ‘e @ e & @& © & e & * e ¢ a )'l‘-79
Teper ratioc. « « « & o« s e o o o s e e s s s s e s o« 051
Mean aerodynamic chord e s s st s e s e s s e e s e s » F7.03 in.
Dlhedl‘&l e o & & o o o o o & o é @ o e @ © ¢ @& © s o o s o 30
Sweepback of quarter~chord line. e e o o e o o o s s e s & 3501kt
Aerodynemic and geometric twist. . « « . o . c e s e e e e . 20

Root "airfoil section (pormal to quarter- :
chord 13n€)e « « ¢ « o ¢ « o o o « « o« « NACA 0012-64 (modified)
Tip airfoil section (normel to guarter-
chord 1ine)e « o « « o ¢ o o o o o « « « NACA 0011-64k (modified)

Allerons

Ares, each . + . . ’ . &« e e+« 18.68g ft
SPBN + .+ s . e e e e e . . 9.8 %
Chord, average . . s e e s e e 2,03 £t
Deflection, maximum « 14% up, 14O down
Inboard end 85 o« « o o o + o o s o o s o o s o o o o o o 5L.6EFD/2

L) . . [
® e o
* o o »
a o e
e o s o
. e

L] L L[] ]
= o o
e e e
e s o o
* o o o

Vertical tail

Area, total. .
Span « « « o o
Aspect ratio .
Taper ratio. .
Sweepback of quarter-chord'line. «

e 7.5 £%
. 1.7k
. 0.36

35000 t

34.4 sq £t

Rudder

e'c s s s e s o « 8.1 8g ft
« e .. 6.61%
c s s s e e s v . . l23FE
.+ o 24,80 right, 250 left

Area « ¢ 4 4 0 o
Span . L] . L] - L] L]
Chord, average . .
Deflection, maximum

Average weight for calculationS. « o« « ¢ « o o o « « « « o 12,800 1b
Moment of inertie sbout X 8Xif ¢ o « « o o o o o o o T,245 slug ££2
Moment of inertia asbout Z axis . . -« « « ¢+ « 23,190 slug ft2
Inclination of principal longitudinal axis

with respect to fuselage reference aXiB. o« « « « o s o o « o =2,5°

~ A




TABLE TII.- PARAMETERS USED IN ESTIMATING ATRPLANE RESPCNSES

Altitude, 33,000 feet Altitude, 10,000 feet
M 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8
v LBt 5831 68l 778l 875t 972 5387 6hEr  7sul BG2
Q 87.0] 125.2| 170.6] 222.5] 281.8] 347.5| 254.7] 366.7] 195.0] 652.0
CL .51 .36 .26 .16 .13 .12 17 .12 .09 .07
o 7.2 5.3 3.8l 2.8 2.4 1.2 2,1] 1.3 8 e
Ixz -1297| -773| -3%9| -83 28| 3686 124 331f Meyy 560

Clig -.1025|-.0857|~.07T73|-.0T41]~.072L|-.0768 || -.0627| ~.0573] ~.0563] -.057L
cnB .1100{ L1146| .1199( .1273| .1366( .1u67 || .1105| 114k .1200| .1270

CYB =690 | =.TOL} =.715[ =.733| -.757| -.782 || -.690] ~.701| —~726] -.735
Cip -.360] -.367| -.375] ~.385| -.399| -.414 || -.358] —.366] ~.375| —.386
Cny, -.0328}-.0225|-.0160|~.0120|~.0092|-.0068 || -.0113| = 0076| ~.0055] —.004L
Cip A57] .130| .216] .108] .106] .10l .o91f .o82| .o78 .076

Cny -,1820 |-.1852 |-.1896|-.1970 |~ .2065(~.2170 [(-.1817 _.i866 ~.1922[-.198k4

L007T7| .0102| 0138 .0155| .0160] .0183 || .0130| .0160| .0180| .0200
Cra,. | =-0730|-.0728]-.0725-.0T42 -.0736}-.0582 || -.0729|~.0726| -.0733| -.0Th2
CYar JA60( .160) .160| .160| .160| .160 J160| .160| .160| .160
clﬁa Q12 .1is| .113] .111) .083] .o043 110} .110{ .110] .110
Cnbﬁ ~.0050 | .0020| .0059 | .008L| .0095| .0105 || .00%0| .0095| .0L10|f .0120
Cyg, - .004| .00%| .oO04| .oOMj .oOM| .OOL .004] .oc0%| .o04 .oOL

AL |--00192 k00113 [. 00076 [ 00070 | 00027 F.000TT || COLLY 00153 | 0014600123
Ao ~1.809 }2.203} 2.667[-3.078|=-3.581|=L4.168 || =4.77]| -5.87| ~7.01| -B.17

(.h38 JL97) 573 . 780 .910] 1.119] 1.322| 1.524
es 5.2 | 7.25] 9.91| 13.h40f 18.03]| 23.45 || 12.75] 19.48| 28.35| 38.35
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TABLE III.- EFFECTS OF Np, Ly, Ixz, AND 7 OR

COEFFICIENTS OF THE CHARACTERISTIC EQUATION
[A=(D -7) (D -2%z) (D% + 3D + e5)]

(a) Effect of variations in Crp

Spirael | Rolling] QOscillatory
Nb root root mode
Ay Ao cy Ca
-0.10 |-0.00168} -1.951 | 0.235{ 5.55
-.05 | -.00192| -1.809 | .378| 5.2k
o} -.00206} -1.731] .455}5.10
.05 | -.00223| -1.6k6 | .541} 4.96
(b) Effect of variations in Cyp
Ly Ay Ao cy Co
1.6881 0.0216 | -1.818 |0.393 | 5.30
Buk )l -.0019 | -1.809 1 .378}5.24
0 -.0262 | -1.804} .359}5.18
-84 -.0520 | -1.795| .342}5.12
(c) Effect of variations in Ixy
-2590k4 1-0.00191 | -1.680 | 0.608 | 5.86
-1297 | -.00192} -1.809 | .378 |5.24
0f -.00193} -1.956 ] .1761]4.78
(d) Effect of flight-path angle
Y Kl x2 c, co
0 }|-0.00192| -1.809 [0.378 | 5.2k
-30°| -.0313 | -1.812 ] .356 ] 5.2k
-90° | -.0595 | -1.816 | .31k |5.23
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Figure 2—- Two-view drawing of the test airplane.
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